By Topic

Adaptive predictor with dynamic fuzzy K-means clustering for lossless image coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lih-Jen Kau ; Dept. Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan

This paper proposed a nonlinear predictor ADFK (Adaptive predictor with Dynamic Fuzzy K-means clustering error feedback) for lossless image coding based on multi-layered perceptrons. Since real images are usually nonstationary, a fixed predictor is not adequate to handle the varying statistics of input images. Using back propagation learning with causal neighbors of the coding pixel as training patterns to update network weights continuously, ADFK is made adaptive on the fly. Furthermore, prediction error is further refined in ADFK by applying error compensation different to compound context error modeling used in CALIC based on dynamic codebook design with adaptive fuzzy k-means clustering algorithm. Compensated errors are then entropy encoded using conditional arithmetic coding based on error strength estimation. The proposed compensation mechanism is proved to be very useful through experiments by further improving the bit rates in an average amount of about 0.2bpp in test images. Success in the use of proposed predictor is demonstrated through the reduction in the entropy and actual bit rate of the differential error signal as compared to that of existing linear and nonlinear predictors.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003