By Topic

Image modeling with position-encoding dynamic trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. J. Slorkey ; Div. of Informatics, Edinburgh Univ., UK ; C. K. L. Williams

This paper describes the position-encoding dynamic tree (PEDT). The PEDT is a probabilistic model for images that improves on the dynamic tree by allowing the positions of objects to play a part in the model. This increases the flexibility of the model over the dynamic tree and allows the positions of objects to be located and manipulated. This paper motivates and defines this form of probabilistic model using the belief network formalism. A structured variational approach for inference and learning in the PEDT is developed, and the resulting variational updates are obtained, along with additional implementation considerations that ensure the computational cost scales linearly in the number of nodes of the belief network. The PEDT model is demonstrated and compared with the dynamic tree and fixed tree. The structured variational learning method is compared with mean field approaches.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 7 )