Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Statistical cue integration in DAG deformable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goldenstein, S.K. ; Dept. of Comput. Sci., Rutgers Univ., USA ; Vogler, C. ; Metaxas, D.

Deformable models are a useful modeling paradigm in computer vision. A deformable model is a curve, a surface, or a volume, whose shape, position, and orientation are controlled through a set of parameters. They can represent manufactured objects, human faces and skeletons, and even bodies of fluid. With low-level computer vision and image processing techniques, such as optical flow, we extract relevant information from images. Then, we use this information to change the parameters of the model iteratively until we find a good approximation of the object in the images. When we have multiple computer vision algorithms providing distinct sources of information (cues), we have to deal with the difficult problem of combining these, sometimes conflicting contributions in a sensible way. In this paper, we introduce the use of a directed acyclic graph (DAG) to describe the position and Jacobian of each point of deformable models. This representation is dynamic, flexible, and allows computational optimizations that would be difficult to do otherwise. We then describe a new method for statistical cue integration method for tracking deformable models that scales well with the dimension of the parameter space. We use affine forms and affine arithmetic to represent and propagate the cues and their regions of confidence. We show that we can apply the Lindeberg theorem to approximate each cue with a Gaussian distribution, and can use a maximum-likelihood estimator to integrate them. Finally, we demonstrate the technique at work in a 3D deformable face tracking system on monocular image sequences with thousands of frames.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 7 )