By Topic

Correlation prefetching with a user-level memory thread

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Solihin, D. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Jaejin Lee ; Torrellas, J.

This paper proposes using a user-level memory thread (ULMT) for correlation prefetching. In this approach, a user thread runs on a general-purpose processor in main memory, either in the memory controller chip or in a DRAM chip. The thread performs correlation prefetching in software, sending the prefetched data into the L2 cache of the main processor. This approach requires minimal hardware beyond the memory processor: The correlation table is a software data structure that resides in main memory, while the main processor only needs a few modifications to its L2 cache so that it can accept incoming prefetches. In addition, the approach has wide applicability, as it can effectively prefetch even for irregular applications. Finally, it is very flexible, as the prefetching algorithm can be customized by the user on an application basis. Our simulation results show that, through a new design of the correlation table and prefetching algorithm, our scheme delivers good results. Specifically, nine mostly-irregular applications show an average speedup of 1.32. Furthermore, our scheme works well in combination with a conventional processor-side sequential prefetcher, in which case the average speedup increases to 1.46. Finally, by exploiting the customization of the prefetching algorithm, we increase the average speedup to 1.53.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 6 )