Cart (Loading....) | Create Account
Close category search window
 

Compiler techniques for the distribution of data and computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Navarro, A. ; Dept. of Comput. Archit., Malaga Univ., Spain ; Zapata, E. ; Padua, D.

This paper presents a new method that can be applied by a parallelizing compiler to find, without user intervention, the iteration and data decompositions that minimize communication and load imbalance overheads in parallel programs targeted at NUMA architectures. One of the key ingredients in our approach is the representation of locality as a locality-communication graph (ICG) and the formulation of the compiler technique as a mixed integer nonlinear programming (MINLP) optimization problem on this graph. The objective function and constraints of the optimization problem model communication costs and load imbalance. The solution to this optimization problem is a decomposition that minimizes the parallel execution overhead. This paper summarizes the process of how the compiler extracts the locality information from a nonannotated code and focuses on how this compiler can derive the optimization problem, solve it, and generate the parallel code with the automatically selected iteration and data distributions. In addition, we include a discussion about our model and the solutions - the decompositions - that it provides. The approach presented in the paper is evaluated using several benchmarks. The experimental results demonstrate that the MINLP formulation does not increase compilation time significantly and that our framework generates very efficient iteration/data distributions for a variety of NUMA machines.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 6 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.