By Topic

Inertial vibration damping control of a flexible base manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. E. George ; George W. Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; W. J. Book

A rigid (micro) robot mounted serially to the tip of a long flexible (macro) robot is often used to increase the reach capability, but flexibility in the macro-manipulator can make it susceptible to vibration. A rigid manipulator attached to a flexible but unactuated base was considered as an analogous problem. The interaction forces and torques acting at the base of the robot are used to damp the vibration. Appropriate control gain limits are established to ensure the inertia effects, or those directly due to accelerating the links of the rigid robot, have the greatest influence on the interactions. By commanding the link accelerations out of phase with the base velocity, vibrational energy will be removed from the system. This signal is then added to the rigid robot position controller, providing combined rigid robot position and vibration control of the base.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:8 ,  Issue: 2 )