By Topic

An optimal information method for mobile manipulator dynamic parameter identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sujan, V.A. ; Dept. of Mech. Eng., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Dubowsky, S.

High-performance robot-control algorithms often rely on system-dynamic models. For field robots, the dynamic parameters of these models may not be well known. The paper presents a mutual-information-based observability metric for the online dynamic parameter identification of a multibody system. The metric is used in an algorithm to optimally select the external excitation required by the dynamic system parameter identification process. The excitation is controlled so that the identification favors parameters that have the greatest uncertainty at any given time. This algorithm is applied to identify the vehicle and suspension parameters of a mobile-field manipulator, and is found to be computationally more efficient and robust to noise than conventional methods. Issues addressed include the development of appropriate vehicle models, compatible with the onboard sensors. Simulations and experimental results show the effectiveness of this algorithm.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:8 ,  Issue: 2 )