By Topic

A decision-theoretic approach to data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elovici, Y. ; Dept. of Inf. Syst. Eng., Ben-Gurion Univ., Beer-Sheva, Israel ; Braha, D.

In this paper, we develop a decision-theoretic framework for evaluating data mining systems, which employ classification methods, in terms of their utility in decision-making. The decision-theoretic model provides an economic perspective on the value of "extracted knowledge", in terms of its payoff to the organization, and suggests a wide range of decision problems that arise from this point of view. The relation between the quality of a data mining system and the amount of investment that the decision maker is willing to make is formalized. We propose two ways by which independent data mining systems can be combined and show that the combined data mining system can be used in the decision-making process of the organization to increase payoff. Examples are provided to illustrate the various concepts, and several ways by which the proposed framework can be extended are discussed.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:33 ,  Issue: 1 )