By Topic

Using unconstrained elite archives for multiobjective optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. E. Fieldsend ; Dept. of Comput. Sci., Univ. of Exeter, UK ; R. M. Everson ; S. Singh

Multiobjective evolutionary algorithms (MOEAs) have been the subject of numerous studies over the past 20 years. Recent work has highlighted the use of an active archive of elite, nondominated solutions to improve the optimization speed of these algorithms. However, preserving all elite individuals is costly in time (due to the linear comparison with all archived solutions needed before a new solution can be inserted into the archive). Maintaining an elite population of a fixed maximum size (by clustering or other means) alleviates this problem, but can cause retreating (or oscillitory) and shrinking estimated Pareto fronts - which can affect the efficiency of the search process. New data structures are introduced to facilitate the use of an unconstrained elite archive, without the need for a linear comparison to the elite set for every new individual inserted. The general applicability of these data structures is shown by their use in an evolution-strategy-based MOEA and a genetic-algorithm-based MOEA. It is demonstrated that MOEAs using the new data structures run significantly faster than standard, unconstrained archive MOEAs, and result in estimated Pareto fronts significantly ahead of MOEAs using a constrained archive. It is also shown that the use of an unconstrained elite archive permits robust criteria for algorithm termination to be used, and that the use of the data structure can also be used to increase the speed of algorithms using ε-dominance methods.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:7 ,  Issue: 3 )