Cart (Loading....) | Create Account
Close category search window
 

Edge sets: an effective evolutionary coding of spanning trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raidl, G.R. ; Inst. of Comput. Graphics & Algorithms, Vienna Univ. of Technol., Austria ; Julstrom, B.A.

The fundamental design choices in an evolutionary algorithm (EA) are its representation of candidate solutions and the operators that will act on that representation. We propose representing spanning trees in EAs for network design problems directly as sets of their edges and we describe initialization, recombination, and mutation operators for this representation. The operators offer locality, heritability, and computational efficiency. Initialization and recombination depend on an underlying random spanning-tree algorithm. Three choices for this algorithm, based on the minimum spanning-tree algorithms of Prim and Kruskal and on random walks, respectively, are examined analytically and empirically. We demonstrate the usefulness of the edge-set encoding in an EA for the NP-hard degree-constrained minimum spanning-tree problem. The algorithm's operators are easily extended to generate only feasible spanning trees and to incorporate local, problem-specific heuristics. Comparisons of this algorithm to others that encode candidate spanning trees via the Blob Code, with network random keys, and as strings of weights indicate the superiority of the edge-set encoding, particularly on larger instances.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:7 ,  Issue: 3 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.