By Topic

Enhanced time-frequency features for neonatal EEG seizure detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hassanpour, H. ; Signal Process. Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia ; Mesbah, M. ; Boashash, B.

Time-frequency based methods have been proved to be superior to other methods in analysing neonatal EEG. This is due to the fact that newborn EEG is nonstationary and multicomponent. This paper presents an approach for improving the performance of the EEG seizure detection technique previously introduced by the authors. The proposed approach utilizes the SVD-based technique for both enhancing the time-frequency representation of the signal and extracting EEG seizure features. Enhancing the time-frequency representation leads to improvement in the quality of the extracted feature. To extract the features the estimated distribution functions of the singular vectors associated with the time-frequency representation of the EEG epoch are used to identify the patterns embedded in the signal. The estimated distributed functions related to the seizure and nonseizure epochs were used to train a neural network to discriminate between seizure and nonseizure patterns.

Published in:

Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on  (Volume:5 )

Date of Conference:

25-28 May 2003