By Topic

Processing of fluxing underfills for flip chip-on-laminate assembly

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Renzhe Zhao ; ECE Dept., Auburn Univ., AL, USA ; Johnson, R.W. ; Jones, G. ; Yaeger, E.
more authors

Fluxing underfill eliminates process steps in the assembly of flip chip-on-laminate (FCOL) when compared to conventional capillary flow underfill processing. In the fluxing underfill process, the underfill is dispensed onto the board prior to die placement. During placement, the underfill flows in a "squeeze flow" process until the solder balls contact the pads on the board. The material properties, the dispense pattern and resulting shape, solder mask design pattern, placement force, placement speed, and hold time all impact the placement process and the potential for void formation. A design of experiments was used to optimize the placement process to minimize placement-induced voids. The major factor identified was board design, followed by placement acceleration. During the reflow cycle, the fluxing underfill provides the fluxing action required for good wetting and then cures by the end of the reflow cycle. With small, homogeneous circuit boards it is relatively easy to develop a reflow profile to achieve good solder wetting. However, with complex SMT assemblies involving components with significant thermal mass this is more challenging.

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 1 )