By Topic

An empirical study of speed and communication in globally distributed software development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Herbsleb, J.D. ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Mockus, A.

Global software development is rapidly becoming the norm for technology companies. Previous qualitative research suggests that distributed development may increase development cycle time for individual work items (modification requests). We use both data from the source code change management system and survey data to model the extent of delay in a distributed software development organization and explore several possible mechanisms for this delay. One key finding is that distributed work items appear to take about two and one-half times as long to complete as similar items where all the work is colocated. The data strongly suggest a mechanism for the delay, i.e., that distributed work items involve more people than comparable same-site work items, and the number of people involved is strongly related to the calendar time to complete a work item. We replicate the analysis of change data in a different organization with a different product and different sites and confirm our main findings. We also report survey results showing differences between same-site and distributed social networks, testing several hypotheses about characteristics of distributed social networks that may be related to delay. We discuss implications of our findings for practices and collaboration technology that have the potential for dramatically speeding distributed software development.

Published in:

Software Engineering, IEEE Transactions on  (Volume:29 ,  Issue: 6 )