By Topic

Enhancement of a genetic algorithm for affine invariant planar object shape matching using the migrant principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. W. M. Tsang ; Dept. of Electron. Eng., City Univ. of Hong Kong, China

The use of the migrant principle has proved to be effective in reducing the impact of the initial populations of genetic algorithms in optimising simple linear functions. Analytical and empirical results have also suggested that the method could be applied to locate an optimal solution in larger search space with more complex landscape. In the paper, an attempt has been made to develop an enhanced object matching technique that is based on the integration of the migrant principle and an existing genetic algorithm for affine invariant object recognition. As the latter had been taken as the foundation of a series of research works, any improvement on the scheme will directly benefit subsequent developments. The problem being addressed is highly nonlinear, which requires well-formed initial populations to attain successful matching of object shapes. Experimental results reveal that, for the same population size and mutation rate, the proposed method demonstrates significant improvement, as compared with its precedent, and that it is insensitive to the initial population.

Published in:

IEE Proceedings - Vision, Image and Signal Processing  (Volume:150 ,  Issue: 2 )