By Topic

Channel scheduling algorithms using burst segmentation and FDLs for optical burst-switched networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
V. M. Vokkarane ; Dept. of Comput. Sci., Texas Univ., Dallas, TX, USA ; G. P. V. Thodime ; V. U. B. Challagulla ; J. P. Jue

Optical burst switching is a promising solution for terabit transmission of IP data bursts over WDM networks. One of the key components in the design of optical burst-switched nodes is the development of channel scheduling algorithms that can efficiently handle data burst contentions. Currently, traditional scheduling techniques use wavelength conversion and buffering to resolve burst contention. In this paper, we reduce packet losses by proposing a number of data channel scheduling algorithms that use burst segmentation and fiber delay lines (FDLs). The proposed scheduling algorithms are classified based on the placement of the FDL buffers in the optical burst-switched node and are referred to as delay-first or segment-first schemes. Simulation results show that these algorithms can effectively reduce the packet loss probability compared to existing scheduling techniques.

Published in:

Communications, 2003. ICC '03. IEEE International Conference on  (Volume:2 )

Date of Conference:

11-15 May 2003