Cart (Loading....) | Create Account
Close category search window
 

Closed-form formulas for ergodic capacity of MIMO Rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyundong Shin ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Jae Hong Lee

We present a new closed-form formula for the ergodic capacity of multiple-input multiple-output (MIMO) wireless channels. Assuming independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs and equal power allocation to each of the transmit antennas, the channel capacity is expressed in closed form as finite sums of the exponential integrals which are the special cases of the complementary incomplete gamma function. Using the well-known asymptotic behavior of the MIMO capacity, we also give a simple approximate expression for the channel capacity. Numerical results show that the approximation is quite accurate for the entire range of average signal-to-noise ratios.

Published in:

Communications, 2003. ICC '03. IEEE International Conference on  (Volume:5 )

Date of Conference:

11-15 May 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.