Cart (Loading....) | Create Account
Close category search window
 

Hardware implementation of a three-dimensional finite-difference time-domain algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Durbano, J.P. ; EM Photonics, Inc., Newark, DE, USA ; Ortiz, F.E. ; Humphrey, J.R. ; Mirotznik, M.S.
more authors

In order to take advantage of the significant benefits afforded by computational electromagnetic techniques, such as the finite-difference time-domain (FDTD) method, solvers capable of analyzing realistic problems in a reasonable time frame are required. Although software-based solvers are frequently used, they are often too slow to be of practical use. To speed up computations, hardware-based implementations of the FDTD method have recently been proposed. Although these designs are functionally correct, to date, they have not provided a practical and scalable solution. To this end, we have developed an architecture that not only overcomes the limitations of previous accelerators, but also represents the first three-dimensional FDTD accelerator implemented in physical hardware. We present a high-level view of the system architecture and describe the basic functionality of each module involved in the computational flow. We then present our implementation results and compare them with current PC-based FDTD solutions. These results indicate that hardware solutions will, in the near future, surpass existing PC throughputs, and will ultimately rival the performance of PC clusters.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:2 ,  Issue: 1 )

Date of Publication:

2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.