By Topic

Study of low-frequency bifurcation phenomena of a parallel-connected boost converter system via simple averaged models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iu, H.H.C. ; Dept. of Electr. & Electron. Eng., Univ. of Western Australia, Crawley, Australia ; Tse, C.K.

This brief attempts to study the low-frequency bifurcation phenomena of a system of parallel-connected dc/dc boost converters. Analysis of the averaged state equations shows that the system loses stability via a Hopf bifurcation. The loci of eigenvalues and the local trajectories are studied. Computer simulations and experiments are performed to capture the effects of variation of some chosen parameters on the qualitative behavior of the system. In particular, it is shown that simple averaged models can be used to predict the occurrence of Hopf bifurcation in such systems.

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:50 ,  Issue: 5 )