By Topic

Fuzzy-based learning rate determination for blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shun-Tian Lou ; Key Lab. for Radar Signal Process., Xidian Univ., Xi''an, China ; Xian-Da Zhang

Many independent component analysis (ICA) algorithms have been proposed for blind source separation. These algorithms belong to the LMS-type algorithm in natural. Hence, the choice of the step-size reflects a tradeoff between misadjustment and the speed of convergence. Based on the separation state of outputs of the neural network for ICA, the paper develops a fuzzy inference-based step-size selection algorithm. The fuzzy inference system consists of two inputs (the second- and higher order correlation coefficients of output components) and one output (the fuzzy learning rate). In this way, the ICA algorithms become more efficient, which is verified by simulation results.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:11 ,  Issue: 3 )