By Topic

Constrained restoration and the recovery of discontinuities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geman, D. ; Dept. of Math. & Stat., Massachusetts Univ., Amherst, MA, USA ; Reynolds, G.

The linear image restoration problem is to recover an original brightness distribution X0 given the blurred and noisy observations Y=KX0+B, where K and B represent the point spread function and measurement error, respectively. This problem is typical of ill-conditioned inverse problems that frequently arise in low-level computer vision. A conventional method to stabilize the problem is to introduce a priori constraints on X0 and design a cost functional H(X) over images X, which is a weighted average of the prior constraints (regularization term) and posterior constraints (data term); the reconstruction is then the image X, which minimizes H. A prominent weakness in this approach, especially with quadratic-type stabilizers, is the difficulty in recovering discontinuities. The authors therefore examine prior smoothness constraints of a different form, which permit the recovery of discontinuities without introducing auxiliary variables for marking the location of jumps and suspending the constraints in their vicinity. In this sense, discontinuities are addressed implicitly rather than explicitly

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 3 )