By Topic

On the detection of motion and the computation of optical flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. H. Duncan ; Maryland Univ., College Park, MD, USA ; T. -C. Chou

A method for the detection of motion in image sequences is presented. In this method, the intensity history at each pixel is convolved with the second derivative in time of a temporal Gaussian smoothing function. The zero crossings in a single frame of the resulting function indicate the positions of moving edges. Intensity changes in time due to illumination effects do not produce zero crossings; thus, they are not interpreted as motion by the present method. It is also shown that the spatial and temporal derivatives of this function can be used to compute the component of the optical flow that is normal to the zero-crossing contours. This computation is also insensitive to nonconvective temporal and spatial variations in the image intensity that are caused by illumination effects

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 3 )