By Topic

Serially concatenated space-time codes with iterative decoding and performance limits of block-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goulet, L. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, Canada ; Leib, H.

This work considers space-time channel coding for systems with multiple-transmit and a single-receive antenna, over space uncorrelated block-fading (quasi-static) channels. Analysis of the outage probability over such channels reveals the existence of a threshold phenomenon. The outage probability can be made arbitrary small by increasing the number of transmit antennas, only if the Eb/N0 is above a threshold which depends on the coding rate. Furthermore, it is shown that when the number of transmit antennas is increased, the ε-capacity of a block-fading Rayleigh channel tends to the Shannon capacity of an additive white Gaussian noise channel. This paper also presents space-time codes constructed as a serial concatenation of component convolutional codes separated by an interleaver. These schemes provide full transmit diversity and are suitable for iterative decoding. The rate of these schemes is less than 1 bit/s/Hz, but can be made arbitrary close to 1 bit/s/Hz by the use of Wyner-Ash codes as outer components. Comparison of these schemes with structures from literature shows that performance gains can be obtained at the expense of a small decrease in rate. Computer simulation results over block-fading Rayleigh channels show that the frame-error rate of several of these schemes is within 2-3 dB from the theoretical outage probability.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 5 )