Cart (Loading....) | Create Account
Close category search window
 

Eigenface-domain super-resolution for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gunturk, B.K. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Batur, A.U. ; Altunbasak, Y. ; Hayes, M.H.
more authors

Face images that are captured by surveillance cameras usually have a very low resolution, which significantly limits the performance of face recognition systems. In the past, super-resolution techniques have been proposed to increase the resolution by combining information from multiple images. These techniques use super-resolution as a preprocessing step to obtain a high-resolution image that is later passed to a face recognition system. Considering that most state-of-the-art face recognition systems use an initial dimensionality reduction method, we propose to transfer the super-resolution reconstruction from pixel domain to a lower dimensional face space. Such an approach has the advantage of a significant decrease in the computational complexity of the super-resolution reconstruction. The reconstruction algorithm no longer tries to obtain a visually improved high-quality image, but instead constructs the information required by the recognition system directly in the low dimensional domain without any unnecessary overhead. In addition, we show that face-space super-resolution is more robust to registration errors and noise than pixel-domain super-resolution because of the addition of model-based constraints.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 5 )

Date of Publication:

May 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.