By Topic

Statistical regularization in linearized microwave imaging through MRF-based MAP estimation: hyperparameter estimation and image computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. Pascazio ; Inst. di Teoria e Tecnica delle Onde Elettromagnetiche, Univ. di Napoli Parthenope, Italy ; G. Ferraiuolo

The application of a Markov random fields (MRF) based maximum a posteriori (MAP) estimation method for microwave imaging is presented in this paper. The adopted MRF family is the so-called Gaussian-MRF (GMRF), whose energy function is quadratic. In order to implement the MAP estimation, first, the MRF hyperparameters are estimated by means of the expectation-maximization (EM) algorithm, extended in this case to complex and nonhomogeneous images. Then, it is implemented by minimizing a cost function whose gradient is fully analytically evaluated. Thanks to the quadratic nature of the energy function of the MRF, well posedness and efficiency of the proposed method can be simultaneously guaranteed. Numerical results, also performed on real data, show the good performance of the method, also when compared with conventional techniques like Tikhonov regularization.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 5 )