By Topic

Improved MPEG-4 still texture image coding under noisy environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. C. L. Chan ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., China ; Tai-Chiu Hsung ; D. P. -K. Lun

This paper describes the performance of the MPEG-4 still texture image codec in coding noisy images. As will be shown, when using the MPEG-4 still texture image codec to compress a noisy image, increasing the compression rate does not necessarily imply reducing the peak-signal-to-noise ratio (PSNR) of the decoded image. An optimal operating point having the highest PSNR can be obtained within the low bit rate region. Nevertheless, the visual quality of the decoded noisy image at this optimal operating point is greatly degraded by the so-called "cross" shape artifact. In this paper, we analyze the reason for the existence of the optimal operating point and the "cross" shape artifact when using the MPEG-4 still texture image codec to compress noisy images. We then propose an adaptive thresholding technique to remove the "cross" shape artifact of the decoded images. It requires only a slight modification to the quantization process of the traditional MPEG-4 encoder while the decoder remains unchanged. Finally, an analytical study is performed for the selection and validation of the threshold value used in the adaptive thresholding technique. It is shown that, the visual quality and PSNR of the decoded images are much improved by using the proposed technique comparing with the traditional MPEG-4 still texture image codec in coding noisy images.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 5 )