By Topic

Database of repetitive elements in complete genomes and data mining using transcription factor binding sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jorng-Tzong Horng ; Dept. of Comput. Sci. & lnfoimation Eng., Nat. Central Univ., Chung-li, Taiwan ; Lin, F.M. ; Lin, J.H. ; Huang, H.D.
more authors

Approximately 43% of the human genome is occupied by repetitive elements. Even more, around 51% of the rice genome is occupied by repetitive elements. The analysis presented here indicates that repetitive elements in complete genomes may have been very important in the evolutionary genomics. In this study, a database, called the Repeat Sequence Database, is first designed and implemented to store complete and comprehensive repetitive sequences. See for more information. The database contains direct, inverted and palindromic repetitive sequences, and each repetitive sequence has a variable length ranging from seven to many hundred nucleotides. The repetitive sequences in the database are explored using a mathematical algorithm to mine rules on how combinations of individual binding sites are distributed among repetitive sequences in the database. Combinations of transcription factor binding sites in the repetitive sequences are obtained and then data mining techniques are applied to mine association rules from these combinations. The discovered associations are further pruned to remove insignificant associations and obtain a set of associations. The mined association rules facilitate efforts to identify gene classes regulated by similar mechanisms and accurately predict regulatory elements. Experiments are performed on several genomes including C. elegans, human chromosome 22, and yeast.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:7 ,  Issue: 2 )