Cart (Loading....) | Create Account
Close category search window
 

10 million unknowns: is it that big? [computational electromagnetics]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Velamparambil, S. ; Ansoft Corp., Boulder, CO, USA ; Weng Cho Chew ; Jiming Song

At the Center for Computational Electromagnetics at the University of Illinois, we recently solved a very-large-scale electromagnetic scattering problem. We computed the bistatic radar cross-section of a full-size aircraft at 8 GHz, involving the solution of a dense matrix equation with nearly 10.2 million unknowns. We regarded this as the "ultimate test" of a massively parallel implementation of the multilevel fast multipole algorithm (MLFMA), called ScaleME. In this paper, we narrate the technical difficulties faced and the experience gained from a very informal point of view. We describe the various methods developed for surmounting each of the obstacles.

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:45 ,  Issue: 2 )

Date of Publication:

April 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.