By Topic

Information fusion for rural land-use classification with high-resolution satellite imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wanxiao Sun ; Dept. of Geogr., Southern Illinois Univ., Carbondale, IL, USA ; V. Heidt ; Peng Gong ; Gang Xu

We propose an information fusion method for the extraction of land-use information based on both the panchromatic and multispectral Indian Remote Sensing Satellite 1C (IRS-1C) satellite imagery. It integrates spectral, spatial and structural information existing in the image. A thematic map was first produced with a maximum-likelihood classification (MLC) applied to the multispectral imagery. Probabilistic relaxation (PR) was then performed on the thematic map to refine the classification with neighborhood information. Furthermore, we incorporated edges extracted from the higher resolution panchromatic imagery in the classification. An edge map was generated using operations such as edge detection, edge thresholding and edge thinning. Finally, a modified region-growing approach was used to improve image classification. The procedure proved to be more effective in land-use classification than conventional methods based only on multispectral data. The improved land-use map is characterized with sharp interregional boundaries, reduced number of mixed pixels and more homogeneous regions. The overall kappa statistics increased considerably from 0.52 before the fusion to 0.75 after.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:41 ,  Issue: 4 )