By Topic

Competitive neural-net-based system for the automatic detection of oceanic mesoscalar structures on AVHRR scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. A. T. Arriaza ; Dept. de Lenguajes y Computacion, Univ. de Almeria, Spain ; F. G. Rojas ; M. P. Lopez ; M. Canton

This paper shows a prototype automatic interpretation system for Advanced Very High Resolution Radiometer satellite ocean images. It is built on a three-level knowledge model (pixel, regional, and domain semantic problem levels) and uses several connectionist computational approaches. First, artificial neural net models (to the pixel level) were used for basic preprocessing tasks such as cloud masking. Next, a new connectionist technique using input vectors with nonnumerical regional marine features has also been developed and used in the identification phase. The paper shows some results of oceanic structure identification tasks (wakes, upwellings, and eddies) in infrared images of the northwest African coast and the Canary Islands. These results illustrate a procedure for improving automatic oceanic interpretation of satellite images.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:41 ,  Issue: 4 )