By Topic

Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruiliang Pu ; Center for Assessment & Monitoring of Forest & Environ. Resources, Univ. of California, Berkeley, CA, USA ; Peng Gong ; G. S. Biging ; M. R. Larrieu

A correlation analysis was conducted between forest leaf area index (LAI) and two red edge parameters: red edge position (REP) and red well position (RWP), extracted from reflectance image retrieved from Hyperion data. Field spectrometer data and LAI measurements were collected within two days after the Earth Observing One satellite passed over the study site in the Patagonia region of Argentina. The two red edge parameters were extracted with four approaches: four-point interpolation, polynomial fitting, Lagrangian technique, and inverted-Gaussian (IG) modeling. Experimental results indicate that the four-point approach is the most practical and suitable method for extracting the two red edge parameters from Hyperion data because only four bands and a simple interpolation computation are needed. The polynomial fitting approach is a direct method and has its practical value if hyperspectral data are available. However, it requires more computation time. The Lagrangian method is applicable only if the first derivative spectra are available; thus, it is not suitable to multispectral remote sensing. The IG approach needs further testing and refinement for Hyperion data.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:41 ,  Issue: 4 )