By Topic

Physics-based detection of targets in SAR imagery using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishnapuram, Balaji ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Sichina, J. ; Carin, L.

Radar scattering from an illuminated object is often highly dependent on the target-sensor orientation. In conjunction with physics based feature extraction, the exploitation of aspect-dependent information has led to successful improvements in the detection of tactical targets in synthetic aperture radar (SAR) imagery. While prior work has attempted to design detectors by matching them to images from a training set, the generalization capability of these detectors beyond the training database can be significantly improved by using the principle of structural risk minimization. In this paper, we propose a detector based on support vector machines that explicitly incorporates this principle in its design, yielding improved detection performance. We also introduce a probabilistic feature-parsing scheme that improves the robustness of detection using features obtained from a two-dimensional matching-pursuits feature extractor. Performance is assessed by considering the detection of tactical targets concealed in foliage, using measured foliage-penetrating SAR data.

Published in:

Sensors Journal, IEEE  (Volume:3 ,  Issue: 2 )