By Topic

Optimization study of stacked micro-channel heat sinks for micro-electronic cooling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaojin Wei ; G.W. Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Joshi, Y.

With smaller inlet flow velocity, a micro-channel stack requires less pumping power to remove a certain rate of heat than a single-layered micro-channel, because it provides a larger heat transfer area. A simple thermal resistance network model was developed to evaluate the overall thermal performance of a stacked micro-channel heat sink. Based on this simple model, in this study, a single objective minimization of overall thermal resistance is carried out using genetic algorithms. The aspect ratio, fin thickness and the ratio of channel width to fin thickness are the variables to be optimized, subject to constraints of maximum pressure drop (4 bar) and maximum volumetric flow rate (1000 ml/min). During the optimization, the overall dimensions, number of layers and pumping power (product of pressure drop and flow rate) are fixed. The study indicates that reduction in thermal resistance can be achieved by optimizing the channel configuration. The effects of number of layers in the stack, pumping power per unit area, and the channel length are also investigated.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:26 ,  Issue: 1 )