Cart (Loading....) | Create Account
Close category search window

An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Esseni, D. ; Dept. of Electr., Univ. of Udine, Italy ; Mastrapasqua, Marco ; Celler, George K. ; Fiegna, C.
more authors

In this paper, we report an experimental investigation of electron mobility in ultrathin SOI MOSFETs operated in double-gate mode. Mobility is measured for silicon thickness down to approximately 5 nm and for different temperatures. Mobility data in single- and double-gate mode are then compared according to two different criteria imposing either the same total inversion charge density or the same effective field in the two operating modes. Our results demonstrate that for silicon films around 10 nm or thinner and at small inversion densities, a modest but unambiguous mobility improvement for double-gate mode operation is observed even if the same effective field as in the single-gate mode is kept. Furthermore, we also document that the mobility in double-gate mode can improve markedly above single-gate mobility when the comparison is made at the same total inversion density. This latter feature of the double-gate operating mode can be very beneficial in the perspective of very-low voltage operation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

March 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.