By Topic

A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shifren, L. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Ringhofer, C. ; Ferry, D.K.

We present results of resonant tunneling diode operation achieved from a particle-based quantum ensemble Monte Carlo (EMC) simulation that is based on the Wigner distribution function (WDF). Methods of including the Wigner potential into the EMC, to incorporate natural quantum phenomena, via a particle property we call the affinity are discussed. Dissipation is included via normal Monte Carlo procedures and the solution is coupled to a Poisson solver to achieve fully selfconsistent results.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 3 )