Cart (Loading....) | Create Account
Close category search window
 

Hydrogen annealing effect on DC and low-frequency noise characteristics in CMOS FinFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jeong-Soo Lee ; Dept. of Electr. Eng., Univ. of Texas, Richardson, TX, USA ; Choi, Yang-Kyu ; Daewon Ha ; Balasubramanian, S.
more authors

The hydrogen annealing process has been used to improve surface roughness of the Si-fin in CMOS FinFETs for the first time. Hydrogen annealing was performed after Si-fin etch and before gate oxidation. As a result, increased saturation current with a lowered threshold voltage and a decreased low-frequency noise level over the entire range of drain current have been attained. The low-frequency noise characteristics indicate that the oxide trap density is reduced by a factor of 3 due to annealing. These results suggest that hydrogen annealing is very effective for improving device performance and for attaining a high-quality surface of the etched Si-fin.

Published in:

Electron Device Letters, IEEE  (Volume:24 ,  Issue: 3 )

Date of Publication:

March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.