By Topic

Quantification of gas concentrations in mixtures of known gases using an array of different tin-oxide sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jervis, B.W. ; Sch. of Eng., Sheffield Hallam Univ., UK ; Desfieux, J. ; Jimenez, J. ; Martinez, D.

Two multilayer-perceptron (MLP) artificial-neural-network (ANN) committee methods and a mathematical-macromodelling method for determining the concentrations of gases in a known gas mixture from the outputs of an array of tin-oxide gas sensors placed in the mixtures are described. The committee approach is also used to determine the associated error bars. A large set of artificial training data generated from the small set of experimental data was used to train the MLPs. For the Bayesian-trained committee methods average predicted concentration errors of 1.66 to 9.49% were obtained. The macromodelling method resulted in errors of 19.7 to 33%, but was much easier to implement and faster. Training by back propagation gave much worse accuracy. The average calculated error bars were in good agreement with the actual errors in prediction. The concentration errors were comparable to those yielded by other methods and were at least partly determined by the original errors in the concentration measurements.

Published in:

Science, Measurement and Technology, IEE Proceedings -  (Volume:150 ,  Issue: 3 )