Cart (Loading....) | Create Account
Close category search window
 

A topology preserving level set method for geometric deformable models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao Han ; Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Chenyang Xu ; Prince, J.L.

Active contour and surface models, also known as deformable models, are powerful image segmentation techniques. Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic behavior, parameterization independence, and ease of implementation. However, a long claimed advantage of geometric deformable models-the ability to automatically handle topology changes-turns out to be a liability in applications where the object to be segmented has a known topology that must be preserved. We present a new class of geometric deformable models designed using a novel topology-preserving level set method, which achieves topology preservation by applying the simple point concept from digital topology. These new models maintain the other advantages of standard geometric deformable models including subpixel accuracy and production of nonintersecting curves or surfaces. Moreover, since the topology-preserving constraint is enforced efficiently through local computations, the resulting algorithm incurs only nominal computational overhead over standard geometric deformable models. Several experiments on simulated and real data are provided to demonstrate the performance of this new deformable model algorithm.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 6 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.