By Topic

Contrast restoration of weather degraded images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Narasimhan, S.G. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Nayar, S.K.

Images of outdoor scenes captured in bad weather suffer from poor contrast. Under bad weather conditions, the light reaching a camera is severely scattered by the atmosphere. The resulting decay in contrast varies across the scene and is exponential in the depths of scene points. Therefore, traditional space invariant image processing techniques are not sufficient to remove weather effects from images. We present a physics-based model that describes the appearances of scenes in uniform bad weather conditions. Changes in intensities of scene points under different weather conditions provide simple constraints to detect depth discontinuities in the scene and also to compute scene structure. Then, a fast algorithm to restore scene contrast is presented. In contrast to previous techniques, our weather removal algorithm does not require any a priori scene structure, distributions of scene reflectances, or detailed knowledge about the particular weather condition. All the methods described in this paper are effective under a wide range of weather conditions including haze, mist, fog, and conditions arising due to other aerosols. Further, our methods can be applied to gray scale, RGB color, multispectral and even IR images. We also extend our techniques to restore contrast of scenes with moving objects, captured using a video camera.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 6 )