By Topic

Contour grouping with prior models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elder, J.H. ; Centre for Vision Res., York Univ., North York, Ont., Canada ; Krupnik, A. ; Johnston, L.A.

Conventional approaches to perceptual grouping assume little specific knowledge about the object(s) of interest. However, there are many applications in which such knowledge is available and useful. Here, we address the problem of finding the bounding contour of an object in an image when some prior knowledge about the object is available. We introduce a framework for combining prior probabilistic knowledge of the appearance of the object with probabilistic models for contour grouping. A constructive search technique is used to compute candidate closed object boundaries, which are then evaluated by combining figure, ground, and prior probabilities to compute the maximum a posteriori estimate. A significant advantage of our formulation is that it rigorously combines probabilistic local cues with important global constraints such as simplicity (no self-intersections), closure, completeness, and nontrivial scale priors. We apply this approach to the problem of computing exact lake boundaries from satellite imagery, given approximate prior knowledge from an existing digital database. We quantitatively evaluate the performance of our algorithm and find that it exceeds the performance of human mapping experts and a competing active contour approach, even with relatively weak prior knowledge. While the priors may be task-specific, the approach is general, as we demonstrate by applying it to a completely different problem: the computation of human skin boundaries in natural imagery.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 6 )