By Topic

Synthesis of reversible logic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shende, V.V. ; Adv. Comput. Archit. Lab., Univ. of Michigan, Ann Arbor, MI, USA ; Prasad, A.K. ; Markov, I.L. ; Hayes, J.P.

Reversible or information-lossless circuits have applications in digital signal processing, communication, computer graphics, and cryptography. They are also a fundamental requirement in the emerging field of quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We prove constructively that every even permutation can be implemented without temporary storage using NOT, CNOT, and TOFFOLI gates. We describe an algorithm for the synthesis of optimal circuits and study the reversible functions on three wires, reporting the distribution of circuit sizes. We also study canonical circuit decompositions where gates of the same kind are grouped together. Finally, in an application important to quantum computing, we synthesize oracle circuits for Grover's search algorithm, and show a significant improvement over a previously proposed synthesis algorithm.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 6 )