By Topic

Flexible dv/dt and di/dt control method for insulated gate power switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shihong Park ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA ; Jahns, T.M.

Active gate control techniques are introduced in this paper for flexibly and independently controlling the dv/dt and di/dt of insulated gate power devices during hard-switching events. In the case of dv/dt control, the output voltage dv/dt can be controlled over a wide range by electronically adjusting the effective gate-to-drain (-collector) capacitance (i.e., Miller capacitance). For di/dt control, similar techniques are applied for electronically adjusting the output current di/dt over a wide range using voltage feedback from a small inductor connected in series with the switch's source (emitter) terminal. Both techniques are designed to maximize their compatibility with power module implementations that combine the power switch and its gate drive, including integrated circuit gate drives. Simulation and experimental results are included to verify the desirable performance characteristics of the presented dv/dt and di/dt control techniques.

Published in:

Industry Applications, IEEE Transactions on  (Volume:39 ,  Issue: 3 )