By Topic

Acoustic characterization of microbubble dynamics in laser-induced optical breakdown

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. M. Milas ; Dept. of Biomed. Eng., Michigan Univ., Ann Arbor, MI, USA ; Jing Yong Ye ; T. B. Norris ; K. W. Hollman
more authors

A real-time acoustic technique to characterize microbubbles produced by laser-induced optical breakdown (LIOB) in water was developed. Femtosecond laser pulses are focused just inside the surface of a small liquid tank. A tightly focused, high frequency, single-element ultrasonic transducer is positioned so its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a bubble forms and a pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble is actively probed with pulse-echo measurements from the same transducer. After the bubble forms, received pulse-echo signals have an extra pulse, describing the bubble location and providing a measure of axial bubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of cavitation bubbles due to optical breakdown. These same plots also can be used to quantify LIOB thresholds.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:50 ,  Issue: 5 )