By Topic

A fast parametric motion estimation algorithm with illumination and lens distortion correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Altunbasak ; Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA ; R. M. Mersereau ; A. J. Patti

Methods for estimating motion in video sequences that are based on the optical flow equation (OFE) assume that the scene illumination is uniform and that the imaging optics are ideal. When these assumptions are appropriate, these methods can be very accurate, but when they are not, the accuracy of the motion field drops off accordingly. This paper extends the models upon which the OFE methods are based to include irregular, time-varying illumination models and models for imperfect optics that introduce vignetting, gamma, and geometric warping, such as are likely to be found with inexpensive PC cameras. The resulting optimization framework estimates the motion parameters, illumination parameters, and camera parameters simultaneously. In some cases these models can lead to nonlinear equations which must be solved iteratively; in other cases, the resulting optimization problem is linear. For the former case an efficient, hierarchical, iterative framework is provided that can be used to implement the motion estimator.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 4 )