Cart (Loading....) | Create Account
Close category search window
 

Simple and efficient finite-element analysis of microwave and optical waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koshiba, M. ; Dept. of Electron. Eng., Hokkaido Univ., Sapporo, Japan ; Inoue, K.

A simple and efficient finite-element method for the analysis of microwave and optical waveguiding problems is formulated using three components of the electric or magnetic field. In order to eliminate spurious solutions, edge elements are introduced. In the edge element approach the nodal parameters are not limited to the magnetic field as in the conventional three-component formulation for the dielectric waveguiding problem. An eigenvalue equation that involves only the edge variables in the transversal plane and can provide a direct solution for the propagation constant is derived. To show the validity and usefulness of this approach, computed results are illustrated for microstrip transmission lines and dielectric waveguides

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:40 ,  Issue: 2 )

Date of Publication:

Feb 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.