Cart (Loading....) | Create Account
Close category search window
 

What stator current processing-based technique to use for induction motor rotor faults diagnosis?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Benbouzid, M.E.H. ; Centre de Robotique, Univ. of Picardie-Jules Verne, Amiens, France ; Kliman, G.B.

In recent years, marked improvement has been achieved in the design and manufacture of stator winding. However, motors driven by solid-state inverters undergo severe voltage stresses due to rapid switch-on and switch-off of semiconductor switches. Also, induction motors are required to operate in highly corrosive and dusty environments. Requirements such as these have spurred the development of vastly improved insulation material and treatment processes. But cage rotor design has undergone little change. As a result, rotor failures now account for a larger percentage of total induction motor failures. Broken cage bars and bearing deterioration are now the main cause of rotor failures. Moreover, with advances in digital technology over the last years, adequate data processing capability is now available on cost-effective hardware platforms, to monitor motors for a variety of abnormalities on a real time basis in addition to the normal motor protection functions. Such multifunction monitors are now starting to displace the multiplicity of electromechanical devices commonly applied for many years. For such reasons, this paper is devoted to a comparison of signal processing-based techniques for the detection of broken bars and bearing deterioration in induction motors. Features of these techniques which are relevant to fault detection are presented. These features are then analyzed and compared to deduce the most appropriate technique for induction motor rotor fault detection.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:18 ,  Issue: 2 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.