By Topic

Sensorless sliding-mode control of induction motors using operating condition dependent models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Proca, A.B. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Keyhani, A. ; Miller, J.M.

A sensorless torque control system for induction motors is developed. The system allows for fast and precise torque tracking over a wide range of speed. The paper also presents the identification and parameter estimation of an induction motor model with parameters varying as functions of the operating conditions encountered in hybrid electric vehicles applications. An adaptive sliding mode speed-flux observer is developed and a cascade of discrete time sliding mode controllers is used for flux and current control. Simulation and experimental results prove the validity of the approach.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:18 ,  Issue: 2 )