By Topic

Refinements of Pinsker's inequality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fedotov, A.A. ; Dept. of Inf. Technol., Inst. of Computational Technol., Novosibirsk, Russia ; Harremoes, P. ; Topsoe, F.

Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e., largest) lower bound determines a function L=L(V), Vajda's (1970) tight lower bound. The main result is an exact parametrization of L. This leads to Taylor polynomials which are lower bounds for L, and thereby to extensions of the classical Pinsker (1960) inequality which has numerous applications, cf. Pinsker and followers.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 6 )