By Topic

Reinforcement learning to adaptive control of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kao-Shing Hwang ; Dept. of Electr. Eng., Nat. Chung Cheng Univ., Chia-Yi, Taiwan ; Shun-Wen Tan ; Min-Cheng Tsai

Based on the feedback linearization theory, this paper presents how a reinforcement learning scheme that is adopted to construct artificial neural networks (ANNs) can linearize a nonlinear system effectively. The proposed reinforcement linearization learning system (RLLS) consists of two sub-systems: The evaluation predictor (EP) is a long-term policy selector, and the other is a short-term action selector composed of linearizing control (LC) and reinforce predictor (RP) elements. In addition, a reference model plays the role of the environment, which provides the reinforcement signal to the linearizing process. The RLLS thus receives reinforcement signals to accomplish the linearizing behavior to control a nonlinear system such that it can behave similarly to the reference model. Eventually, the RLLS performs identification and linearization concurrently. Simulation results demonstrate that the proposed learning scheme, which is applied to linearizing a pendulum system, provides better control reliability and robustness than conventional ANN schemes. Furthermore, a PI controller is used to control the linearized plant where the affine system behaves like a linear system.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 3 )