By Topic

A neuro-fuzzy approach for segmentation of human objects in image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shie-Jue Lee ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Chen-Sen Ouyang ; Shih-Huai Du

We propose a novel approach for segmentation of human objects, including face and body, in image sequences. Object segmentation is important for achieving a high compression ratio in modern video coding techniques, e.g., MPEG-4 and MPEG-7, and human objects are usually the main parts in the video streams of multimedia applications. Existing segmentation methods apply simple criteria to detect human objects, leading to the restriction of the usage or a high segmentation error. We combine temporal and spatial information and employ a neuro-fuzzy mechanism to overcome these difficulties. A fuzzy self-clustering technique is used to divide the base frame of a video stream into a set of segments which are then categorized as foreground or background based on a combination of multiple criteria. Then, human objects in the base frame and the remaining frames of the video stream are precisely located by a fuzzy neural network constructed with the fuzzy rules previously obtained and is trained by a singular value decomposition (SVD)-based hybrid learning algorithm. The proposed approach has been tested on several different video streams, and the results have shown that the approach can produce a much better segmentation than other methods.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 3 )