By Topic

Hierarchical active shape models, using the wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Davatzikos, C. ; Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA ; Xiaodong Tao ; Dinggang Shen

Active shape models (ASMs) are often limited by the inability of relatively few eigenvectors to capture the full range of biological shape variability. This paper presents a method that overcomes this limitation, by using a hierarchical formulation of active shape models, using the wavelet transform. The statistical properties of the wavelet transform of a deformable contour are analyzed via principal component analysis, and used as priors in the contour's deformation. Some of these priors reflect relatively global shape characteristics of the object boundaries, whereas, some of them capture local and high-frequency shape characteristics and, thus, serve as local smoothness constraints. This formulation achieves two objectives. First, it is robust when only a limited number of training samples is available. Second, by using local statistics as smoothness constraints, it eliminates the need for adopting ad hoc physical models, such as elasticity or other smoothness models, which do not necessarily reflect true biological variability. Examples on magnetic resonance images of the corpus callosum and hand contours demonstrate that good and fully automated segmentations can be achieved, even with as few as five training samples.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 3 )